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The collision of solitons due to Alfven waves in plasmas is studied in this paper by the
aid of quasi-particle theory. The suppression of the interaction of solitons, in presence
of the perturbation terms, is acheived by means of this theory. The perturbation
terms that are considered in this paper are nonlinear damping, finite conductivity
and Landau damping. The numerical simulations support the theory that was developed.
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1. INTRODUCTION

The study of solitons in the context of Plasma Physics is governed by the
derivative nonlinear Schrödinger’s equation (DNLSE) (Ablowitz and Clarkson,
1991; Biswas, 2005; Fla and Mjolhus, 1989; Mamun, 1999; Mjolhus and Wyller,
1988). The dimensionless form of DNLSE is given by

qt + iqxx + (|q|2q)x = 0 (1)

Equation (1) is integrable (Ablowitz and Clarkson, 1991; Kaup and Newell, 1978;
Wyller and Mjolhus, 1984) by Inverse Scattering Transform (IST) since it passes
the Painleve test of integrability (Ablowitz and Clarkson, 1991).

The DNLSE has historically found applications in many areas of physics, one
example being circularly polarized nonlinear Alfveń waves in plasmas. Related
models have recently received fresh attention in the context of chiral Luttinger
liquids; some of these models can be obtained by a dimensionl reduction of
a Chern–Simmons model defined in two dimensions. The DNLSE has some
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pecularities, for instance, it is not Galilean invariant and it has classical solitons
which have an upper bound on the particle number and are chiral (with a particular
sign of momentum). In these aspects DNLSE differs from the usual nonlinear
Schrödinger’s equation although both of them are classically integrable (Basu-
Mallick et al., 2003, 2004).

The DNLSE is used for modeling of wave processes in different physical
systems such as nonlinear optics, Stokes waves in fluids of finite depth and many
others. In nonlinear optics, DNLSE can be derived in a systemetic way by means
of reductive perturbation scheme as a model for single mode propagation.

Moreover, DNLSE arises in the study of the collective processes in dusty
plasmas, namely plasmas with extremely massive and highly charged dust grains
which are ubiquitous in laboratory, space and astrophysical plasma environments
such as cometary tails, asteroid zones, planetary rings, interstellar medium, earth’s
environment, just to name a few. It has been shown, both theoretically and ex-
perimentally, that the presence of extremely massive and highly charged static
dust grains modifies the existing plasma wave spectra. A substantial number
of investigations have already been made on linear and nonlinear properties of
the electrostatic modes in dusty plasmas with or without external magnetic field
(Mamun, 1999).

Recently, there has been rapidly growing interest in the study of different
types of new electromagnetic modes in dusty plasmas and a limited number of
attempts on these electromagnetic modes have been made by a number of authors.
The linear analysis of electromagnetic waves, propagating perpendicular to the
external magnetic field, in a multi-species dusty plasma was carried out. The low
frequency electromagnetic Alfveń mode, in dusty cometary and planetary plasmas,
was also studied (Mamun, 1999).

2. MATHEMATICAL MODEL

The perturbed DNLSE that is going to be studied in this paper for the soliton-
soliton interaction (SSI) is

qt + iqxx + (|q|2q)x = εR[q, q∗] (2)

where

R = δ|q|2mq + βqxx + λ
∂

∂x

{
q(x, t)

1

π
P

∫ ∞

−∞

|q(s, t)|2
s − x

ds

}
(3)

In (2), R represents the perturbation terms while the perturbation parameter ε

satisfies 0 < ε � 1. Here, in (3), the coefficient of δ represents the nonlinear gain
(damping) depending on whether δ is positive or negative. Also, the coefficient of
β arises when finite conductivity is included in the reductive perturbation treatment
of the Alfveń waves in plasmas (Boling and Yaping, 1995; Mjolhus and Wyller,
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1988; Wyller and Mjolhus, 1984). Moreover, the non-local perturbation term with
λ accounts for nonlinear Landau damping (Ding and Zhu, 2002; Fla and Mjolhus,
1989; Gazol et al., 1999) where P represents the principal value of the integral.
This perturbation term also plays an important role in collisionless plasmas. It is
to be noted that the coefficient λ, for cold plasmas, is zero (Wyller and Mjolhus,
1984).

The quasi-particle theory (QPT) of SSI will be investigated and it will be
proved by virtue of it that the interaction can be supressed due to the presence of
perturbation terms in (2).

The soliton solution of (1) as obtained by IST is given by

q(x, t) = A

[κ + a cosh{A(x − x̄)}] 1
2

ei(κx−ωt+σ0) (4)

where

A = 2
√

κ2 + ω (5)

ω = A2

4
− κ2 (6)

a =
√

ω + 2κ2 (7)

v = dx̄

dt
= −2κ (8)

Here in (4), A represents the soliton amplitude or the inverse width of the soliton,
κ is the frequency while ω is the wave number of the soliton. Finally, x̄ and σ0 are
the center of the soliton and center of phase of the soliton respectively, so that v
gives the velocity of the soliton that is related to the frequency as given in (8).

Also, the 2-soliton solution of the DNLSE (1) takes the asymptotic form
(Biswas, 1999)

q(x, t) =
2∑

l=1

At

[κl + al cosh{Al(x − x̄l)}] 1
2

ei(κlx−ωl t+σ0l
) (9)

where

At = 2
√

κ2
l + ωl (10)

ωl = A2
l

4
− κ2

l (11)

al =
√

ωl + 2κ2
l (12)
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In the study of SSI, the initial waveform is taken to be of the form

q(x, 0) = η1[
κ1 + a1 cosh

{
η1

(
x − x0

2

)}] 1
2

eiφ1 + η2[
κ2 + a2 cosh

{
η2

(
x + x0

2

)}] 1
2

eiφ2

(13)
which represents initial 2-soliton like waves. Here, x0 represents the initial sep-
aration of the solitons. It needs to be noted that for x0 → ∞(9) represents exact
soliton solutions, but for x0 ∼ O(1) it does not represent an exact 2-soliton so-
lution. Corresponding to the input waveform given by (13) the case of in-phase
input of solitons with equal amplitudes will be studied. Thus without any loss
of generality the choice η1 = η2 = 1 and φ1 = φ2 = 0 is considered so that (13)
modifies to

q(x, 0) =
√

2

cosh
1
2
(
x − x0

2

) +
√

2

cosh
1
2
(
x + x0

2

) (14)

3. QUASI-PARTICLE THEORY

The QPT dates back to 1981 since the appearance of the paper by Karpman
and Solov’ev (2000). The mathematical approach to the SSI using the QPT will be
studied in this paper. Here, the solitons are treated as particles. If two waveforms
are separated and each of them is close to a soliton they can be written as the linear
superposition of two soliton like waveforms (Biswas, 1999) given by

q(Z, T ) = q1(Z, T ) + q2(Z, T ) (15)

with

ql(x, t) = At

[Bl + αl cosh[Al(x − xl)]]
1
2

e−iBl (x−xl )+iδl (16)

where l = 1, 2 and Al , Bl, xl and δl are functions of t. It needs to be noted that Al , Bl

do not represent the amplitude, and frequency of the full wave form. However, they
approach the amplitude and frequency respectively for large separation namely
as x = x1 − x2 → ∞, then Al → ηl and and Bl → κl . Since the waveform is
assumed to remain in the form of two solitons, the method is called the quasi-
particle approach. First, the equations for Al , Bl , x1 and δl will be derived using
the soliton perturbation theory (SPT) (Biswas, 1999). Substituting (15) into (2)
gives

∂ql

∂t
+ i

∂2ql

∂x2
+ ∂

∂x
(|ql|2ql) = iεR[ql, q

∗
l ] − ∂

∂x

(
2|ql|2ql̄ + q2

l q
∗̄
l

)
(17)

where l = 1, 2 and l̄ = 3 − l. Here, the separation

(|q|2q)x = [(|q1|2q1 + q2
1q∗

2 + 2|q1|2q2
) + (|q2|2q2 + q2

2q∗
1 + 2|q2|2q1

)]
x

(18)
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was used based on the degree of overlapping. By SPT, the evolution equations are

dAl

dt
= F

(l)
1 (A,x,φ) + εMl (19)

dBl

dt
= F

(l)
2 (A,x,φ) + εNl (20)

dxl

dt
= −Bl − F3(A,x,φ) + εQl (21)

dδl

dt
= Bl − A2

l

4
+ F4 (A,x,φ) + εPl (22)

where, the functions F
(l)
1 , F (l)

2 , F3 and F4 formulate on using the SPT in (17), with
the right side being treated as perturbation terms and

Ml = hl(Al)
∫ ∞

−∞
�{R̂[ql, q

∗
l ]e−iφl } dτl

(Bl + al cosh τl)
1
2

dτl (23)

Nl = h2(Al)
∫ ∞

−∞
	{R̂[ql, q

∗
l ]e−iφl } sinh τl

(Bl + al cosh τl)
1
2

dτl (24)

Ql = h3(Al)
∫ ∞

−∞
�{R̂[ql, q

∗
l ]e−iφl } τl

(Bl + al cosh τl)
1
2

dτl (25)

Pl = h4(Al)
∫ ∞

−∞
	{R̂[ql, q

∗
l ]e−iφl } (1 − alτl sinh τl)

(Bl + al cosh τl)
1
2

dτl (26)

Here, the functions hj (Al) for 1 ≤ j ≤ 4 are by virtue of (19)–(22) and � and 	
stands for the real and imaginary parts respectively. Also, the following notations
are used (Mamun, 1999; Mio et al., 1976; Mjolhus and Wyller, 1988; Ozawa,
1996; Ruderman, 2002; Sen and Chowdhury, 1987; Wyller and Mjolhus, 1984)

R̂[ql, q
∗
l ] = R[ql, q

∗
l ] − ∂

∂x

(
q2

l q
∗̄
l

+ 2|ql|2ql̄

)
(27)

τl = Al(x − xl) (28)

φl = Bl(x − xl) − δl (29)

φ = Bx + δ (30)

x = x1 − x2 (31)

δ = δ1 − δ2 (32)

A = 1

2
(A1 + A2) (33)

B = 1

2
(B1 + B2) (34)
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A = A1 − A2 (35)

B = B1 − B2 (36)

Moreover, it was assumed that

|A| � A (37)

|B| � 1 (38)

Ax � 1 (39)

|A|x � 1 (40)

From (19) to (22) one can now obtain

dA

dZ
= εM (41)

dB

dZ
= εN (42)

d(A)

dt
= F

(1)
1 (A,x,φ) − F

(2)
1 (A,x,φ) + εM (43)

d(B)

dt
= F

(1)
2 (A,x,φ) − F

(2)
2 (A,x,φ) + εN (44)

d(φ)

dt
= −B + εQ (45)

d(φ)

dt
= 1

2
AA + x

2

(
F

(1)
2 + F

(2)
2

) + εBQ + εP (46)

where

M = 1

2
(M1 + M2) (47)

N = 1

2
(N1 + N2) (48)

and M , N , Q and P are the variations of M, N, Q and P which are written
as for example

M = ∂M

∂A
A + ∂M

∂B
B (49)

assuming that they are functions of A and B only, which is, in fact, true for most
of the cases of interest, otherwise, the equations for

T = 1

2
(T1 + T2) (50)
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and

φ = 1

2
(φ1 + φ2) (51)

would have been necessary. In presence of the perturbation terms, as given by, (3),
the dynamical system of the soliton parameters, by virtue of soliton perturbation
theory, are (Ablowitz and Clarkson, 1991; Biswas, 1999, 2003)

dA

dt
= ε

E

[
δA2m+2

2mam+1
F

(
m + 1,m + 1,m + 3

2
;
a − B

2a

)
B

(
m + 1,

1

2

)

−βA2B2

a
F

(
1, 1,

3

2
;
a − B

2a

)
B

(
1,

1

2

)

− βA4

4a2
F

(
2, 2,

5

2
;
a − B

2a

)
B

(
2,

1

2

)

+ βA4B

8a3
F

(
3, 3,

7

2
;
a − B

2a

)
B

(
3,

1

2

)

+ βA4B

4a
F

(
3, 1,

7

2
;
a − B

2a

)
B

(
1,

3

2

)]

+ 2ελA3

πE

∫ ∞

−∞

1

B + a cosh τ

{
∂

∂x
P

∫ ∞

−∞

dτ1

(s − x)(B + a cosh τ1)

}
dτ

+ ε

4E
(A2E + 4B2E − 8AB)

[
δA2m+1

2mam+1
F

(
m + 1,m + 1,m + 3

2
;
a − B

2a

)
B

(
m + 1,

1

2

)

− βAB2

a
F

(
1, 1,

3

2
;
a − B

2a

)
B

(
1,

1

2

)
− βaA3F

(
1, 1

5

2
;
a − B

2a

)

×B

(
1,

3

2

)
+ λA

π

∫ ∞

−∞

1

B + a cosh τ

×
{

∂

∂x
P

∫ ∞

−∞

dτ1

(s − x)(B + a cosh τ1)

}
dτ − aλA2

2π

×
∫ ∞

−∞

sinh τ

(B + a cosh τ )2

{
P

∫ ∞

−∞

dτ1

(s − x)(B + a cosh τ1)

}
dτ

]
(52)
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dB

dt
= εβAB

2a2E

[
A2BF

(
2, 2,

5

2
;
a − B

2a

)
B

(
2,

1

2

)

− 2a
(
A2 + 4B2) F

(
1, 1,

3

2
;
a − B

2a

)
B

(
1,

1

2

)]
+ εaABλ

πE

×
∫ ∞

−∞

sinh τ

(B + a cosh τ )2

{
P

∫ ∞

−∞

dτ1

(s − x)(B + a cosh τ1)

}
dτ

]
(53)

where τ1 = A(s − x̄) and E is the energy of the unperturbed soliton, given by

E =
∫ ∞

−∞
|q|2dx = A

2a
F

(
1, 1,

3

2
;
a − κ

2a

)
B

(
1,

1

2

)
= 4 tan−1

(
A

2κ

)
(54)

and F (α, β; γ ; z) is the Gauss’ hypergeometric function defined as

F (α, β; γ ; z) = � (γ )

� (α) � (β)

∞∑
n=0

� (α + n) � (β + n)

� (γ + n)

zn

n!
(55)

and B(l, m) is the usual beta function. For A(t) = 1 and B(t) = 0, the dynamical
system given by (52) and (53) has a stable fixed point provided

β =
2λ

∫ ∞
−∞

2
cosh τ

{
∂
∂x

∫ ∞
−∞

2dτ1
(s−x) cosh τ1

}
dτ

πF
(
2, 2, 5

2 ; 1
2

)
B

(
2, 1

2

)

+2δF
(
m + 1,m + 1,m + 3

2 ; 1
2

)
B

(
m + 1, 1

2

)
F

(
2, 2, 5

2 ; 1
2

)
B

(
2, 1

2

) (56)

Thus, one can obtain using, (45), (46) and (53)–(55)

d2(x)

dt2
+ εβG

d(x)

dt
+ F

(1)
2 − F

(2)
2 = 0 (57)

where, G > 0 represents the coefficient of −εβB in d(B)/dt = dB1/dt −
dB2/dt and β is given by (56). Now, Eq. (57) shows that there is a damping in
the separation of solitons, thus proving that there will be a suppression of the SSI
in presence of the perturbation terms given by (3).

4. NUMERICAL SIMULATIONS

The mathematical set up, given by (52) to (57), will be used to study the
supression of SSI by numerical simulation. In Figs. 1–3, the choices ε = 0.1,
A1 = A2 = 0.8, a1 = a2 = 0.1, B1 = B2 = 1.2 and x1 = −x2 = 8 were made,
so that x = 16. In all the simulations, the solitons’ transmission distance was
taken to be t = 10.
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Fig. 1. m = 0, δ = 1 and β = 1.57.

Fig. 2. m = 1, δ = 1 and β = 2.

Fig. 3. m = 2, δ = 1 and β = 3.14.
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5. CONCLUSIONS

In this paper, the SSI of the Alfvén waves in plasmas is studied. The suppres-
sion of the SSI is acheived and this is proved by the quasi-particle theory of SSI.
The numerical results also support the theory that was developed in this paper. In
future one can take a look into other perturbation terms and their effects on SSI
and how it can be suppressed. Such results will be reported in a future publication.
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